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STABLE ISOTOPE THEORY: EQUILIBRIUM
FRACTIONATION

INTRODUCTION
Stable isotope geochemistry is concerned with variations of the isotopic compositions of light ele-

ments arising from chemical fractionations rather than nuclear processes.  The elements most com-
monly studied are H, Li, B, C, N, O, Si, S and Cl.  Of these, O, H, C and S are by far the most impor-
tant.  These elements have several common characteristics:

¥  They have low atomic mass.
¥  The relative mass difference between the isotopes is large.
¥  They form bonds with a high degree of covalent character.
¥  The elements exist in more than one oxidation state (C, N, and S), form a wide variety of com-

pounds (O), or are important constituents of naturally occurring  solids and fluids.
¥  The abundance of the rare isotope is sufficiently high (generally at least tenths of a percent) to

facilitate analysis.
Geologically useful information has generally not been extracted (with some exceptions) from ele-

ments not meeting these criteria.  For example, 48Ca/40Ca has a large relative mass difference, but i t
tends to form ionic bonds; little fractionation has been observed.  Mg is a light element, but in addition
to its bonds being dominantly ionic, it is generally surrounded by the same atomic environment
(octahedral O).  Perhaps the biggest exception to these rules is the observation of isotope fraction-
ation of heavy elements in inclusions of the Allende meteorite.

Stable isotopes can be applied to a variety of problems.  One of the most common is geothermome-
try.  Another is process identification.  For instance, plants that produce ÔC4Õ hydrocarbon chains
(that is, hydrocarbon chains 4 carbons long) as their primary photosynthetic products fractionate
carbon differently than to plants that produce ÔC3Õ chains.  This fractionation is retained up the food
chain.  This allows us to draw some inferences about the diet of fossil mammals from the stable iso-
tope ratios in their bones.  Sometimes stable isotopes are used as 'tracers' much as radiogenic isotopes
are.  So, for example, we can use oxygen isotope ratios in igneous rocks to determine whether they
have assimilated crustal material.  The extent of isotopic fractionation varies inversely with tem-
perature: fractionations are large at low temperature and small at high temperature.

NOTATION AND DEFINITIONS

The δ Notation

Variations in stable isotope ratios are typically in the parts per thousand range and hence are gen-
erally reported as permil variations, δ, from some standard.  Oxygen isotope fractionations are gener-
ally reported in permil deviations from SMOW (standard mean ocean water):
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The same formula is used to report other stable isotope ratios.  Hydrogen isotope ratios, δD, are re-
ported relative to SMOW, carbon isotope ratios relative to PDB, the Pee Dee Belemite carbonate, ni-
trogen isotope ratios relative to atmospheric nitrogen, and sulfur isotope ratios relative to troilite in
the Canyon Diablo iron meteorite.  Cl isotopes are also reported relative to seawater; Li and B are
reported relative to NBS (which has now become NIST: National Institute of Standards and
Technology) standards.  Unfortunately, a dual standard has developed for reporting O isotopes.
People working mainly with carbonates (paleotemperatures) simply report δ18O relative to the PDB
carbonate standard.  This value is related to SMOW by:
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Table 25.1 lists the values for standards used in stable isotope analysis.

The Fractionation Factor

An important parameter in stable isotope geochemistry is the fractionation factor, α .  It is defined
as:

αA-B =
RA

RB
25.3

where RA and RB are the isotope ratios of two phases, A and B.
The fractionation of isotopes between two phases is often also reported as ∆A-B = δA Ð δB.   The rela-

tionship between ∆ and α is:

∆ ≈ (α - 1)103             or         ∆ ≈ 103 ln α 25.4
We derive it as follows.  Rearranging equ. 25.1, we have:

RA = (δΑ + 103)RSTD/103 25.5

where R denotes an isotope ratio.  Thus α may be expressed as:

α  = 
(δΑ  + 103)RSTD/ 103

(δΒ + 103)RSTD/ 103
   = 

(δΑ  + 103)

(δΒ + 103)
  25.6

Subtracting 1 from each side and rearranging, we obtain:

α − 1 =  
(δΑ  – δΒ )

(δΒ + 103)
   ≈ 

(δΑ  – δΒ )
103   =  ∆ × 10-3 25.7

since δ is generally << 103. The second equation in 25.4 results from the approximation that for x ≈ 1, ln
x ≈ 1 Ð x.
As we will see, α is related to the equilibrium constant of thermodynamics by

αA-B = (K/K∞)1/n 25.8

where n is the number of atoms exchanged, K∞ is the equilibrium constant at infinite temperature, and
K is the equilibrium constant is written in the usual way (except that concentrations are used rather
than activities because the ratios of the activity coefficients are equal to 1, i.e., there are no isotopic
effects on the activity coefficient).

 THEORY OF ISOTOPIC FRACTIONATIONS
Isotope fractionation can originate from both kinetic effects and equilibrium effects.  The former

might be intuitively expected (since for example, a lighter isotope will diffuse faster than a heavier
one), but the latter will undoubtedly seem somewhat surprising.  After all, we have been taught tha t

Table 25.1.  Isotope Ratios of Stable Isotopes
Element Notation Ratio Standard Absolute Ratio
Hydrogen δD D/H (2H/1H) SMOW 1.557 × 10-4

Lithium δ6Li 6li/7Li NBS L-SVEC 0.08306
Boron δ11B 11B/10B NBS 951 4.044
Carbon δ13C 13C/12C PDB 1.122 × 10-2

Nitrogen δ15N 15N/14N atmosphere 3.613 × 10-3

Oxygen δ18O 18O/16O SMOW, PDB 2.0052 × 10-3

δ17O 17O/16O SMOW 3.76 × 10-4

Chlorine δ37Cl 37Cl/35Cl seawater ~0.31978
Sulfur δ34S 34S/32S CDT 4.43 × 10-2
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oxygen is oxygen, and its properties are dictated by its electronic structure.  In the following sections,
we will see that quantum mechanics predicts that mass affects the strength of chemical bonds and the
vibrational, rotational, and translational motions of atoms.  These quantum mechanical effects
predict the small differences in the chemical properties of isotopes quite accurately.  We shall now
consider the manner in which isotopic fractionations arise.

The electronic structures of all isotopes of an element are identical and since the electronic structure
governs chemical properties, these properties are generally identical as well.  Nevertheless, small
differences in chemical behavior arise when this behavior depends on the frequencies of atomic and
molecular vibrations. The energy of a molecule can be described in terms of several components: elec-
tronic, nuclear spin, translational, rotational and vibrational.  The first two terms are negligible and
play no role in isotopic fractionations. The last three terms are the modes of motion available to a
molecule and are the cause of differences in chemical behavior among isotopes of the same element.
Of the three, vibration motion plays the most important role in isotopic fractionations.  Transla-
tional and rotational motion can be described by classical mechanics, but an adequate description of
vibrational motions of atoms in a lattice or molecule requires the application of quantum theory.  As
we shall see, temperature-dependent equilibrium isotope fractionations arise from quantum mechani-
cal effects in vibrational motions.  These effects are, as one might expect, generally small.  For exam-
ple, the equilibrium constant for the reaction

1
2
C O2

16  + H2 O18  → 1
2
C O2

18  + H2 O16

is only about 1.04 at 25°C.
 Figure 25.1 is a plot of the

potential energy of a
diatomic molecule as a func-
tion of distance between the
two atoms.  This plot looks
broadly similar to one we
might construct for paddle
ball: a child's toy consisting
of a rubber ball connected to a
wooden paddle by a rubber
band. When the distance
between the center point of
the ball and paddle is very
small, the ball is compressed,
and the potential energy of
the system correspondingly
high.  At great distances
between the ball and paddle,
the rubber band is stretched
and the energy of the system
also high.  At some in-
termediate distance, there is
no stress on either the ball or
the rubber band, and the po-
tential energy of the system
is at a minimum (for a per-
fectly elastic ball and rubber
band in a friction-free envi-
ronment, energy would be
nevertheless be conserved be-
cause kinetic energy is at a
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Figure 25.1. Energy-level diagram for the hydrogen atom.
Fundamental vibration frequencies are 4405 cm-1 for H2, 3817 cm-1 for
HD, and 3119 cm-1 for D2.  The zero-point energy of H2 is greater than
that for HD which is greater than that for D2.  From O'Neil (1986).
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maximum when potential energy is at a minimum).  The diatomic oscillator, for example consisting of
an Na and a Cl ion, works in an analogous way.  At small interatomic distances, the electron clouds
repel each other (the atoms are compressed); at large distances, the atoms are attracted to each other
by the net charge on atoms.  At intermediate distances, the potential energy is at a minimum.  The
energy and the distance over which the atoms vibrate are related to temperature.

In quantum theory, a diatomic oscillator cannot assume just any energy: only discrete energy levels
may be occupied.  The permissible energy levels, as we shall see, depend on mass.  Quantum theory
also tells us that even at absolute 0 the atoms will vibrate at a ground frequency ν0.  The system will
thus have an energy of 1/2hν0, where  h is Planck's constant.  This energy level is called the Zero Point
Energy (ZPE).  It energy depends the electron arrangements, the nuclear charges, and the positions of
the atoms in the molecule or lattice, all of which will be identical for isotopes of the same element,
but since energy also depends inversely on the masses of the atoms involved, thus it will be different
for different for isotopes.  The vibrational energy level for a given quantum number will be lower for a
bond involving the a heavier isotope of an element, as suggested in Figure 25.1.  Thus bonds involving
heavier isotopes will be stronger.  If a system consists of two possible atomic sites with different bond
energies and two isotopes of an element available to fill those sites, the energy of the system is mini-
mized when the heavy isotope occupies the site with the stronger bond.  Thus at equilibrium, the
heavy isotope will tend to occupy the site with the stronger bond.  This, in brief, is why equilibrium
fractionations arise.  Because bonds involving lighter isotopes are weaker and more readily broken,
the lighter isotopes of an element participate more readily in a given chemical reaction.  If the reac-
tion fails to go to completion, which is often the case, this tendency gives rise to kinetic fractionations
of isotopes.  There are other causes of kinetic fractionations as well, and will consider them in the
next lecture.  We will no consider in greater detail the basis for equilibrium fractionation, and see
that they can be predicted from statistical mechanics.

Equilibrium Fractionations

Urey (1947) and Bigeleisen and Mayer (1947) pointed out the possibility of calculating the equilib-
rium constant for isotopic exchange reactions from the partition function, q, of statistical mechanics.
In the following discussion, bear in mind that quantum theory states that only discrete energies are
available to an atom or molecule.

At equilibrium, the ratio of molecules having internal energy Ei to those having the zero point en-
ergy E0 is:

 ni
n0

= gie
–Ei/kT 25.9

where n0 is the number of molecules with ground-state or zero point energy, ni is the number of mole-
cules with energy Ei and k is Boltzmann's constant, T is the thermodynamic, or absolute, temperature,
and g is a statistical weight used to account for possible degenerate energy levels* (g is equal to the
number of states having energy Ei).  The average energy (per molecule) in a system is given by the
Boltzmann distribution function, which is just the sum of the energy of all possible states times the
number of particles in that state divided by the number of particles in those states:

  niEiΣ
i

niΣ
i

i
=

giEie
–Ei/kTΣ

i

gie
–Ei/kTΣ

i

25.10

The partition function, q, is the denominator of this equation:
  q = gie

-Ei/kT∑
i

25.11

Substituting 25.11 into 25.10, we can rewrite 25.10 in terms of the partial derivatives of q:
                                                
* The energy level is said to be 'degenerate' if two or more states have the same energy level Ei.
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E = kT2 ∂lnq

∂T
25.12

We will return to these equations shortly, but first letÕs see how all this relates to some parameters
that are more familiar from thermodynamics and physical chemistry.  It can also be shown (but we
won't) from statistical mechanics that entropy  is related to energy and q by

 
S =

U

T
+ Rlnq 25.13

Where R is the ideal gas constant and U is the internal energy of a system. We can rearrange this as:
 U – TS = –Rlnq 25.14

And for the entropy and energy changes of a reaction, we have:
   ∆U – T∆S = –Rln qN

ξ∏ 25.15

where ξ in this case is the stoichiometric coefficient.  The left hand side of this equation is simply
the Gibbs Free Energy change of reaction under conditions of constant volume (as would be the case for
an isotopic exchange reaction), so that

   ∆G = – RTln qN
ξ∏ 25.16

 The Gibbs Free Energy change is related to the equilibrium constant, K, by:
 ∆G = – RTlnK 25.17

so the equilibrium constant for an isotope exchange reaction is related to the partition function as:
   K = qN

ξ∏ 25.18

For example, in the reaction involving exchange of 18O between H2O and CO2, the equilibrium constant
is simply:

 
K =

qC O
16 qH2 O

18

qC O
18 qH2 O

16
25.19

The point of all this is simply that: the usefulness of the partition function is that it can be calcu-
lated from quantum mechanics, and from it we can calculate equilibrium fractionations of isotopes.

The partition function can be written as:
 qtotal = qtrqvibqrot 25.20

i.e., the product of the translational, rotational and vibrational partition functions.  It is convenient
to treat these three modes of motion separately.  Let's now do so.  

For the translational motion, qtrans is expressed as:
  qtrans = gtr,ie

-Etr,i/kT∑
i

25.21

At temperatures above about 2 K, translational energy levels are so closely spaced that they essen-
tially form a continuum, so we can use a classical mechanical approach to calculating the energy.  The
quantum translational energy of a particle in a cubical box is given by:

                                                
  Entropy is defined in the second law of thermodynamics, which states:

dS = 
dQrev

T
where Qrev is heat gained by a system in a reversible process.  Entropy can be thought of as a measure of
the randomness of a system.
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Etrans =

n
2
h

2

8md
2

25.22

where n is the quantum energy level, h is PlanckÕs constant, d is the length of the side of the cube, and
m is mass.  Substituting 25.22 into 25.21 and integrating:

  

qtrans = e
– n

2
h

2

8md
2
kT dn

0

∞

=
2πmkT

1/2

h
d 25.23

gives an expression for qtrans for each dimension.  The total translational partition function is then:
  qtrans = 2πmkT

h2

3/2
V 25.24

where V is volume and is equal to d3.  (It may seem odd that the volume should enter into the calcula-
tion, but since it is the ratio of partition functions that are important in equations such as 25.19, a l l
terms in 25.24 except mass will eventually cancel.) If translation motion were the only component of
energy, the equilibrium constant for exchange of isotopes would be simply the ratio of the molecular
weights raised to the 3/2 power.  If we define the translational contribution to the equilibrium con-
stant as Ktr as:

  Ktr = qtr
ξΠ 25.25

Ktr reduces to the product of the molecular masses raised to the stoichiometric coefficient times three-
halves:

  Ktr = mt
3ξ /2Π 25.26

Thus the translational contribution to the partition function and fractionation factor is independent of
temperature.

The allowed quantum rotational energy states are:
  

Erot =
j (j + 1)h2

8π2I
25.27

where j is the rotational quantum number and I is the moment of inertia.  For a diatomic molecule, I=
µd2, where d is the bond length, and µ is reduced mass:

µ = 
m1m2

m1 + m2
 25.28

A diatomic molecule will have two rotational axes, one along the bond axis, the other perpendicular
to it.  Hence in a diatomic molecule, j quanta of energy may be distributed 2j+1 ways because there are
two possibilities for every value of j except j = 0, for which there is only one possible way.  The statis-
tical weight factor is there for 2j + 1.  Hence:

   
qrot = (2 j + 1) exp

j (j + 1) h
2

8π
2
IkT

∑ 25.29

Again the spacing between energy levels is relatively small (except for hydrogen) and 25.29 may be
evaluated as an integral.  For a diatomic molecule, the partition function for rotation is given by:

  
qrot =

8π2IkT

σh2
25.30

where σ is a symmetry factor equal to the number of equivalent ways of orienting the molecule in
space.  It is 1 for a heteronuclear diatomic molecule (such as CO or 18O16O), and 2 for a homonuclear
molecule such as 16O2.  Equ. 25.30 also holds for linear polyatomic molecules and is 2 if the molecule
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has a plane of symmetry (e.g., CO2) and 1 if it does not.  For non-linear polyatomic molecules, the par-
tition function is given by:

  
qrot =

8π2 8π2ABC
1/2

kT 3/2

σh3
25.31

where A, B, and C are the principal moments of inertia of the molecule.  In calculating the rotational
contribution to the partition function and equilibrium constant, all terms cancel except for moment of
inertia and the symmetry factor, and the contribution of rotational motion to isotope fractionation is
also independent of temperature.  For diatomic molecules we may write:   

Krot =
Ii

σi

ξ

∏
i

25.32

In general, bond lengths are also independent of the isotope involved, so the moment of inertia term
may be replaced by the reduced masses.

We will simplify the calculation of the vibrational partition function by treating the diatomic
molecule as a harmonic oscillator (as Fig. 25.1 suggests, this is a good approximation in most cases).  In
this case the quantum energy levels are given by:

  Evib = n +
1

2
hν 25.33

where n is the vibrational quantum number and ν is vibrational frequency (notice that this reduces to
the zero point energy discussed above when n = 0).  Unlike rotational and vibrational energies, the
spacing between vibrational energy levels is large at geologic temperatures, so the partition function
cannot be integrated.  Instead, it must be summed over all available energy levels.  For diatomic mole-
cules the summation is simply equal to:

  
qvib =

exp(–hν/2kT)

1 – exp(–hν/2kT)
25.34

For a non-linear polyatomic molecule consisting of m atoms and the product is performed over all vi -
brational modes, l (there are only 3m-5 modes of motion for a linear polyatomic molecule, hence the
product is carried out only to 3m-5):

  
qvib =

exp(–hν /2kT)
1 – exp(–hν /2kTΠ

= 1

3m – 6
25.35

At room temperature, the exponential term in the denominator approximates to 0, and the denomina-
tor therefore approximates to 1,  so the relation simplifies to:

  qvib ≅ exp(–hν/2kT) 25.36

Thus at low temperature, the vibrational contribution to the equilibrium constant approximates to:
  Kvib = eξhν /2kTΠ 25.37

which has an exponential temperature dependence.
The full expression for the equilibrium constant calculated from partition functions for diatomic

molecules is then:
   

K = qi
tr
qi

rot
qi

vib ξ
i∏

i

= Mi
3/2 Ii

σi

eξhν
i
/2kT

1 – eξhν
i
/2kT

ξ
i

∏
i

25.38

By use of the Teller-Redlich spectroscopic theorem*, this equation simplifies to:

                                                
* The Teller-Redlich Theorem relates to products of the freqencies for each symmetry type of the two
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K =

1

σi

mi
3/2

U
e–U/2

1 – e–U

ξ
i

∏
i

25.39

where m is the mass of the isotope exchanged and U is defined as:
  

U =
hν
kT

=
hcω
kT

25.40

and ω is the vibrational wave number.

Example of fractionation factor calculated from partition functions

To illustrate the use of partition functions in calculating theoretical fractionation factors, we will
do the calculation for a very simple reaction: the exchange of 18O and 16O between O2 and CO:

C16O + 18O16O = C18O + 16O2 25.41
The choice of diatomic molecules greatly simplifies the equations.  The equilibrium constant is:

 
K =

O2
16 C O18

O18 O16 C O16
25.42

Note we can use concentrations rather than activities or fugacities because the activity coefficient of
a phase is independent of its isotopic compositions.  The fractionation factor, α, is defined as:

  
α =

O18 / O16
CO

O18 / O16
O2

25.43

We must also consider the exchange reaction:
18O18O + 16O16O = 216O18O

for which we can write a second equilibrium constant, K2.  It turns out that when both reactions are
considered, α ≈ 2K.  The reason for this is as follows.  The isotope ratio in molecular oxygen is related
to the concentration of the 2 molecular species as:

 O
18

O
16

O2

=
O18 O16

O18 O16 + 2 O2
16

25.44

(16O2 has 2 16O atoms, so it must be counted twice) whereas the ratio in CO is simply:
 O

18

O
16

CO

=
C O18

C O16
25.45

Letting the isotope ratio equal R, the we can solve 25.44 for [18O16O]:
 

O18 O16 = 2
O2

16 RO2

1 – RO2

25.46

                                                                                                                                                            
isotopes to the ratios of their masses and moments of inertia:

 m2
m1

3/2I1
I2

M1
M2

3/2

=
U1
U2

  We need not concern ourselves with its details.
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and substitute it into 25.42:   

 

K =
1 – RO2

C O18

2RO2
C O16

=
1 – RO2

RCO

2RO2

25.47

Since the isotope ratio is a small number, the term (1 ÐÊR) ≈ 1, so that:
  

K ≅
RCO

2RO2

=
α
2

25.48
We can calculate K from the partition functions as:

 
K =

q O2
16 qC O

18

q O
18

O
16 qC O

16
25.49

where each partition function is the product of the translational, rotational, and vibrational parti-
tion functions.  However, we will proceed by calculating an equilibrium constant for each mode of mo-
tion.  The total equilibrium constant will then be the product of all three partial equilibrium con-
stants.  For translational motion, we noted the ratio of partition functions reduces to the ratio of mo-
lecular masses raised to the 3/2 power.  Hence:

  
Ktr =

q O2
16 qC O

18

q O
18

O
16 qC O

16
=

M O2
16 MC O

18

M O
18

O
16 MC O

16

3/2

=
32 × 30

34 × 28

3/2

= 1.0126 25.50

We find that CO would be 12.6ä richer in 18O if translational motions were the only modes of energy
available.

In the expression for the ratio of rotational partition functions, all terms cancel except the moment
of inertia and the symmetry factors. The symmetry factor is 1 for all the molecules involved except
16O2.  In this case, the terms for bond length also cancel, so the expression involves only the reduced
masses.  So the expression for the rotational equilibrium constant becomes:

  

Krot =
q O2

16 qC O
18

q O
18

O
16 qC O

16
=

I O2
16 IC O

18

2I O
18

O
16 IC O

16
=

1

2

16 × 16

16 + 16

12 × 18

12 + 18

18 × 16

18 + 16

12 × 16

12 + 16

=
1

2
0.9916 25.51

(ignore the 1/2, it will cancel out later).  If rotational were the only mode of motion, 18O would be 8
per mil more abundant in O2.

The vibrational equilibrium constant may be expressed as:
  

Kvib =
q O2

16 qC O
18

q O
18

O
16 qC O

16
= exp

–h νC O
16 + ν O

18
O

16 – νC O
18

, vib
– ν O2

16

2kT
25.52

 Since we expect the difference in vibrational frequencies to be quite small, we may make the ap-
proximation ex = x + 1.  Hence:

  
Kvib ≅ = 1 +

h

2kT
νC O

16 – νC O
18 – ν O2

16 – ν O
18

O
16 25.53

 Let's make the simplification that the vibration frequencies are related to reduced mass as in a sim-
ple Hooke's Law harmonic oscillator:

   
ν =

1

2π
k

µ
25.54
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where k is the forcing constant,  and depends on bond strength, and will be identical for all isotopes of
an element.  In this case, we may write:

  
νC

18
O

= νC
16

O

µC
18

O

µC
16

O

= νC
16

O

20

21
= 0.976νC

16
O

25.55

A similar expression may be written relating the vibrational frequencies of the oxygen mole-
cule: ν O1816 O = 0.9718ν O2

16   
Substituting these expressions in the equilibrium constant expression, we have:

Kvib = 1 + h
2kT

 νC O16 [1 – 0.976] - ν O2
16 [1 – 0.9718]

The measured vibrational frequencies of CO and O2 are 6.50 × 1013 sec-1 and 4.74 × 1013 sec-1.  Substi-
tuting these values and values for the Planck and Boltzmann constants, we obtain:

 Kvib = 1 +
5.976

T
At 300 K (room temperature), this evaluates to 1.0199.

We may now evaluate the total exchange equilibrium constant at 300 K as:

K = KtrKrotKvib = 1.0126 × 
2
1

 0.9916 × 1.0199 = 
2
1

 1.024

Since α = 2K, the fractionation factor is 1.024 at 300 K and would decrease by about 6 per mil per 100°
temperature increase (however, we must bear in mind that our approximations hold only at low tem-
perature).  This temperature dependence is illustrated in Figure 25.2.  Thus CO would be 24 permil
richer in the heavy isotope, 18O, than O2.  This illustrates an important rule of stable isotope frac-
tionations:
The heavy isotope goes preferentially in the chemical compound in which the element is most
strongly bound.

Translational and rotational energy modes are, of course, not available to solids.  Thus isotopic
fractionations between solids are entirely controlled by the vibrational partition function.  In
principle, fractionations between coexisting solids could be calculated as we have done above.  The
task is considerably complicated by the variety of vibrational modes available to a lattice.  The
lattice may be treated as a large polyatomic molecule having 3N-6 vibrational modes, which for
large N approximates to 3N.  Vibrational frequency and heat capacity are closely related because
thermal energy in a crystal is stored as vibra-
tional energy of the atoms in the lattice.  Ein-
stein and Debye independently treated the prob-
lem by assuming the vibrations arise from inde-
pendent harmonic oscillations.  Their models can
be used to predict heat capacities in solids.

The vibrational motions available to a lattice
may be divided into 'internal' or 'optical' vibra-
tions between individual radicals or atomic
groupings within the lattice such as CO3, and
SiÐO.  The vibrational frequencies of these
groups can be calculated from the Einstein func-
tion and can be measured by optical spectros-
copy.  In addition, there are vibrations of the
lattice as a whole, called 'acoustical' vibra-
tions, which can also be measured, but may be
calculated from the Debye function.  From either
calculated or observed vibrational frequencies,
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Figure 25.2.  Fractionation factor, α= (18O/16O)CO/
(18O/16O)O2, calculated from partition functions as
a function of temperature.
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partition function ratios may be calculated,
which in turn are directly related to the frac-
tionation factor.  Generally, the optical modes
are the primary contribution to the partition
function ratios.  For example, for partitioning of
18O between water and quartz, the contribution
of the acoustical modes is less than 10%.  The
ability to calculate fractionation factors is
particularly important at low temperatures
where reaction rates are quite slow, and
experimental determination of fractionation
therefore difficult.  Figure 25.3 shows the calcu-
lated fractionation factor between quartz and
water as a function of temperature.
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Figure 25.3.  Calculated temperature depend-
encies of the fractionation of oxygen between
water and quartz.  From Kawabe (1978).


