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INTRODUCTION AND PHYSICS OF THE NUCLEUS
INTRODUCTION

Isotope geochemistry has grown over the last 40 years to become one of the most important fields in
the Earth Sciences as well as in geochemistry.  It has two broad subdivisions: radiogenic isotope
geochemistry and stable isotope geochemistry.  These subdivisions reflect the two primary reasons
why the isotopes of some elements vary in nature: radioactive decay and chemical fractionation.  One
might recognize a third subdivision: cosmogenic isotope geochemistry, but this subdivision is perhaps
better considered a part of radiogenic isotope geochemistry, since although cosmogenically produced
isotopes are not products of radioactive decay, they are products of nuclear reactions.

The growth in the importance of isotope geochemistry reflects its remarkable success in attacking
fundamental problems of Earth Science, as well as problems in astrophysics and physics.  Isotope geo-
chemistry has played an important role in transforming geology from a qualitative, observational
science to a modern quantitative one.  To appreciate the point, consider the Ice Ages, a phenomenon
that has fascinated geologist and layman alike for the past 150 years.  The idea that much of the
northern hemisphere was once covered by glaciers was first advanced by Swiss zoologist Louis Agas-
siz in 1837.  His theory was based on observations of geomorphology and modern glaciers.  Over the
next 100 years, this theory advanced very little, other than the discovery that there had been more
than one ice advance.  Isotopic studies in the last 40 years (and primarily in the past 20) have deter-
mined the exact times of these ice ages and the exact extent of temperature change (about 3¡ or so
cooler) in temperate latitudes.  Knowing the timing of these glaciations has allowed us to conclude
that variations in the EarthÕs orbital parameters (the Milankovitch parameters) and resulting
changes in insolation have been the direct cause of these ice ages.  Comparing isotopically deter-
mined temperatures with CO2 concentrations in bubbles in carefully dated ice cores leads to the hy-
pothesis that atmospheric CO2 plays and important role in amplifying changes in insolation.  Care-
ful U-Th dating  of corals is now revealing the detailed timing of the melting of the ice sheet.  Com-
paring this with stable isotope geothermometry shows that melting lagged warming (not too surpris-
ingly).  Other recent isotopic studies have revealed changes in the ocean circulation system as the
last ice age ended.  Changes in ocean circulation may also be an important feedback mechanism af -
fecting climate.  Twenty years ago, all this was very interesting, but not very relevant.  Today, it pro-
vides us with critical insights into how the planetÕs climate system works.  With the current concern
over potential global warming and greenhouse gases, this information is extremely ÔrelevantÕ.

Other examples of the impact of isotope geochemistry could be listed.  The list would include such
diverse topics as ore genesis, mantle dynamics, hydrology, and hydrocarbon migration, monitors of
the cosmic ray flux, crustal evolution, volcanology, oceanic circulation,  archeology  and anthropol-
ogy, environmental protection and monitoring, and paleontology.  Indeed, there are few, if any, areas
of geological inquiry where isotopic studies have not had a significant impact.

One of the first applications of isotope geochemistry remains one of the most important: geochro-
nology and cosmochronology: the determination of the timing of events in the history of the Earth
and the Universe.  The first ÔdateÕ was obtained by Boltwood in 1907, who determined the age of a
uranium ore sample by measuring the amount of the radiogenic daughter of U, namely lead, present.
Other early applications include determining the abundance of isotopes in nature to constrain models
of the nature of the nucleus and models of nucleosynthesis (the origin of the elements).  Work on the
latter problem still proceeds.  The usefulness of stable isotope variations as indicators of the condi-
tions of natural processes was recognized by Harold Urey in the 1940Õs.

This course will touch on many, though not all, of these applications.  Before discussing applica-
tions, however, we must build a firm basis in the physical and chemical fundamentals.
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PHYSICS OF THE NUCLEUS

Early Development of Atomic and the Nuclear Theory

That all matter consists of atoms was first proposed by John Dalton, an English school teacher, in
1806.  Prout showed in 1815 that atomic weights were integral multiples of the mass of hydrogen.
This observation was strong support for the atomic theory, though it was subsequently shown not to
hold for all elements.  J. J. Thomson developed the first mass spectrograph in 1906 and provided the
answer as to why the Law of Constant Proportions did not always hold: those elements not having in-
teger weights had several isotopes, each of which had mass that was an integral multiple of the
mass of H.  In the mean time, Rutherford had made another important observation: that atoms con-
sisted mostly of empty space.  This led to BohrÕs model of the atom, proposed in 1910, which stated
that the atom consisted of a nucleus, which contained most of the mass, and electrons in orbit about it.

It was nevertheless unclear why some atoms of an element had different mass than other atoms.
The answer was provided by W. Bothe and H. Becker of Germany and James Chadwick of England:
the neutron.  Bothe and Becker discovered the particle, but mistook it for radiation.  Chadwick won
the Nobel Prize for determining the mass of the neutron in 1932.  Various other experiments showed
the neutron could be emitted and absorbed by nuclei, so it became clear that differing numbers of neu-
trons caused some atoms to be heavier than other atoms of the same element.  This bit of history leads

to our first basic observation about
the nucleus: it consists of protons
and neutrons.

Some Definitions and Units

Before we consider the nucleus in
more detail, letÕs set out some defi-
nitions:
N: the number of neutrons,   Z: the
number of protons (this is the same
as atomic number, since the number
of protons dictates the chemical
properties of the atom), A: Mass
number (N+Z), M: Atomic Mass, I:
Neutron excess number (I=N-Z). Iso-
topes have the same number of pro-
tons, but different number neutrons;
isobars have the same mass number
(N+Z); isotones have the same
number of neutrons but different
number of protons.

The basic unit of nuclear mass is
the dalton (formerly known as the
amu, or atomic mass unit), which is
based on the mass 12C≡12, that is,
the mass of 12C is 12 daltons.  The
masses of atomic particles are:

proton:       1.007593 daltons (or
amu, atomic mass units) =
1.6726231 x 10-27 kg

neutron      1.008982 daltons
electron     0.000548756 daltons  =

9.10093897 x 10-31 kg

0 10 3020 40 6050 70 9080
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Z, proton number

N =
 Z

N
, n

eu
tro

n 
nu

m
be

r

Figure 1.1  Neutron number vs. proton number for stable nu-
clides.
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Nucleons, Nuclei, and Nuclear Forces

Figure 1.1 is a plot of N vs. Z showing
which nuclides are stable.  A key observation
in understanding the nucleus is that not a l l
nuclides (combinations of N and Z) are stable.
In other words, we cannot simply throw
protons and neutrons (collectively termed
nucleons) together and expect them to
necessarily to form a nucleus.  For some
combinations of N and Z, a nucleus forms, but
is unstable, with half-lives from >1015 yrs to
<10Ð12 sec.

An interesting observation from Figure 1.1 is
that N Å Z for stable nuclei.  Thus a signifi-
cant portion of the nucleus consists of protons,
which obviously tend to repel each other by
electrostatic force.  Notice also that for small
A, N=Z, for large A, N>Z.  This is another
important observation that will lead to the
first model of the nucleus.

From the observation that nuclei exist a t
all, it is apparent that another force must exist that is stronger than coulomb repulsion at short
distances.  It must be negligible at larger distances, otherwise all matter would collapse into a single
nucleus.  This force, called the nuclear force, is a manifestation of one of the fundamental forces of
nature (or a manifestation of the single force in nature if you prefer unifying theories), called the
strong force.  If this force is assigned a strength of 1, then the strengths of other forces are: electromag-
netic 10-2; weak force 10-5; gravity 10-39 (weÕll discuss the weak nuclear force later).  Just as electromag-
netic forces are mediated by a particle, the photon, the nuclear force is mediated by the pion.   The
photon carries one quantum of electromagnetic force field; the pion carries one quantum of nuclear force
field.  A comparison of the relative strengths of the nuclear and electromagnetic forces as a function of
distance is shown in Figure 1.2.

Atomic Masses and Binding Energies

The carbon 12 atom consists of 6 neutrons, 6 protons and 6 electrons.  But using the masses listed
above, we find that the masses of these 18 particles do not add to 12 daltons, the mass of 12C.  There is
no mistake, they do not add up.  What has happened to the extra mass?  The mass has been converted
to the energy binding the nucleons.

It is a general physical principle that the lowest energy configuration is the most stable.  We would
expect that if 4He is stable relative to two free neutrons and two free protons, 4He must be a lower en-
ergy state compared to the free particles.  If this is the case, then we can predict from Einstein's mass-
energy equivalence:

E = mc2 1.1
that the 4He nucleus has less mass that 2 free neutrons and protons.  It does in fact have less mass.
From the principle that the lowest energy configurations are the most stable and the mass-energy
equivalence, we should be able to predict the relative stability of various nuclei from their masses
alone.  
We define the mass decrement of an atom as:

δ = W – M 1.2
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Figure 1.2.  The nuclear and electromagnetic potential
of a proton as a function of distance from the proton.
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Pions and the Nuclear Force
As we noted, we can make an a  pri ori  guess as

to two of the properties of the nuclear force: i t
must be very strong and i t must have a very short
range.  Since neutrons as wel l  as protons are subject
to the nuclear force, we may also conclude that i t
is not electromagnetic in nature.  What inferences
can we make on the nature of the force and the
particle that mediates i t?  Wil l  th is particle
have a mass, or be massless l ike the photon?

All  particles, whether they have mass or not,
can be described as waves, according to quantum
theory.  The relationship between the wave
properties and the particle properties is given by
the de  Brogl i e  Equa ti on:

λ  = 
h
p   1.3

where h  i s PlanckÕs constant, λ  i s the wavelength ,
cal led the de  Brogl i e  wa ve l ength , and p  i s mo-
mentum.  Equation 1.3 can be rewritten as:

λ  = 
h

mv 1.4

where m  i s mass (relativistic mass, not rest mass)
and v  i s veloci ty.  From th is relation we see that
mass and de Brogl ie wavelength  are inversely re-
lated: massive particles wil l  have very short
wavelengths.

The wavefunction associated with  the parti -
cle may be wri tten as:

   
1
c2

∂2ψ(x,t)
∂t2 – ∇2ψ(x,t) = – mc

h
2ψ(x,t) 1.5

where ∇ 2 i s simply the LaPlace operator:
   

∇2 ≡ ∂
2

∂x2
+

∂
2

∂y2
+

∂
2

∂z2

The square of the wave function, ψ2, describes the
probabi l i ty of the particle being found at some
point in space x and some time t .  In the case of
the pion, the wave equation also describes the
strength  of the nuclear force associated with  i t.

Let us consider the particularly simple case of
a time-independent, spherical ly symmetric solu-
tion to equation 1.5 that could describe the pion
field outside a nucleon located at the origin.  The
solution wil l  be a potential  function V(r), where r
i s radial  distance from the origin and V is the
strength  of the field.  The condition of time-inde-
pendence means that the fi rst term on the left
wil l  be 0, so the equation assumes the form:

   ∇2V (r) = – mc
h

2 V (r) 1.6

r i s related to x, y  and z as:

  r = x2 + y2 + z2    and    
   ∂r

∂x
= x

r

Using th is relationship and a l i ttle mathemati -
cal  manipulation, the LaPlace operator in 1.5 be-
comes:

   ∇2V (r) = 1
r2

d
dr

r2 dV(r)
dr

1.7

and 1.5 becomes:
  1

r2
d
dr

r2 dV(r)
dr

= – mc
h

2 V (r)

Two possible solutions to th is equation are:
   1

r exp (–r cm
h

) and 1
r exp (+r cm

h
)

The second solution corresponds to a force increas-
ing to infini ty at infini te distance from the source,
which  is physical ly unreasonable, thus only the
first solution is physical ly meaningful .  Our solu-
tion, therefore, for the nuclear force is

  V(r) =C
r exp (–r cm

h
) 1.8

where C is a  constant related to the strength  of
the force.  The term c/ mh has units of length -1.  It
i s a  constant that describes the effective range of
the force.  This effective range is about 1.4 × 10-13

cm.  This implies a mass of the pion of about 0.15
daltons.  It i s interesting to note that for a  mass-
less particle, equation 1.8 reduces to

  V(r) =C
r 1.9

which  is just the form of the potential  field for
the electromagnetic force.  Thus both  the nuclear
force and the electromagnetic force satisfy the
same general  equation (1.8).  Because pion has
mass while the photon does not, the nuclear force
has a very much shorter range than the electro-
magnetic force.

A simple calculation shows how the nuclear
potential  and the electromagnetic potential  wi l l
vary with  distance.  The magnitude for the nu-
clear potential  constant C is about 10-18 erg-cm.
The constant C in equation 1.9 for the electromag-
netic force is e2 (where e is the charge on the elec-
tron) and has a value of 2.3 × 10-19 erg-cm.  Using
these values, we can calculate how each  poten-
tial  wi l l  vary with  distance.  This is just how
Figure 1.2 was produced.
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where W is the sum of the mass of
the constituent particles and M is
the actual mass of the atom.  For
example, W for 4He is WÊ=Ê2mp +
2mn + 2me = 4.034248 daltons.  The
mass of 4He is 4.003873 daltons,  so
δÊ=Ê0.030375 daltons.  Converting
this to energy using Equ. 1.1 yields
28.28 MeV.  This energy is known as
the binding energy.  Dividing by A,
the mass number, or number of nu-
cleons, gives the binding energy
perÊnucleon, Eb:

 
Eb =

W – M

A
c

2 1.10

This is a measure of nuclear stabil-
ity: those nuclei with the largest
binding energy per nucleon are the
most stable.  Figure 1.3 shows Eb as
a function of mass.  Note that the
nucleons of intermediate mass tend to be the most stable.  This distribution of binding energy is impor-
tant to the life history of stars, the abundances of the elements, and radioactive decay, as we shal l
see.

Some indication of the relative strength of the nuclear binding force can be obtained by comparing
the mass decrement associated with it to that associated with binding an electron to a proton in a hy-
drogen atom.  The mass decrement we calculated above for He is of the order of 1%, 1 part in 102.  The
mass decrement associated with binding an electron to a nucleus of the order of 1 part in 108.  So bonds
between nucleons are about 106 times stronger than bonds between electrons and nuclei.

The Liquid Drop Model

Why are some combinations of N and Z more stable than others?  The answer has to do with the
forces between nucleons and how
nucleons are organized within the
nucleus.  The structure and organi-
zation of the nucleus are questions
still being actively researched in
physics, and full treatment is cer-
tainly beyond the scope of this class,
but we can gain some valuable in-
sight to nuclear stability by consider-
ing two of the simplest models of nu-
clear structure. The simplest model of
the nucleus is the liquid-drop model ,
proposed by Niels Bohr in 1936. This
model assumes all nucleons in a nu-
cleus have equivalent states.  As its
name suggests, the model treats the
binding between nucleons as similar
to the binding between molecules in a
liquid drop. According to the liquid-
drop model, the total binding of nu-
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cleons is influenced by 4 effects: a volume energy, a surface energy, an excess neutron energy, and a
coulomb energy.  The variation of three of these forces with mass number and their total effect is
shown in Figure 1.4.

In the liquid drop model, the binding energy is given by the equation:

B(A,I)= a1A – a2A
2/3 – a3I

2/4A – a4Z
2/4A3 + δ 1.11

where:
a1: heat of condensation (volume energy ∝ A) = 14 MeV
a2: surface tension energy = 13 MeV
a3: excess neutron energy = 18.1 MeV
a4: coulomb energy = 0.58 MeV
δ: even-odd fudge factor.  Binding energy greatest for even-even and smallest for odd-odd.

Some of the nuclear stability rules above can be deduced from equation 1.11.  Solutions for equation
1.11 at constant A, that is for isobars, result in a hyperbolic function of I, as illustrated in Figure 1.5.
For odd A, one nuclei will lie at or near the bottom of this function (energy well).  For even A, two
curves result, one for odd-odd, and one for even-even.  The even-even curve will be the one with the
lower (more stable) one.
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Figure 1.5  Graphical illustration of total binding energies of the isobars of mass
number A= 81 (left) and A=80 (right).  Energy values lie on parabolas, a single
parabola for odd A and two parabolas for even A.  Binding energies of the ' last '
proton and 'last' neutrons  are approximated by the straight lines in the lower part of
the figure.  After Suess (1987).
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Odd-Even Effects and Magic Numbers
Something that we have alluded to and which the liquid drop model does not explain well is the

even-odd effect.  This effect is illustrated in Table 1.1.  Clearly, even combinations of nuclides are
much more likely to be stable than odd ones.  This is the first indication that the liquid drop model
does not provide a complete description of nuclear stability.  Another observation not explained by
the liquid drop model is the so-called Magic Numbers.  The Magic Numbers are 2, 8, 20, 28, 50, 82, and
126.  Some observations about  magic numbers:

1. Isotopes and isotones with magic numbers are unusually common (i.e., there are a lot of different
nuclides in cases where N or Z equals a magic number).

2. Magic number nuclides are unusually abundant in nature (high concentration of the nuclides).
3. Delayed neutron emission in fission occurs in nuclei containing N*+1 neutrons.
4.  Heaviest stable nuclides occur at N=126 (and Z=83).
5.  Binding energy of last neutron or proton drops for N*+1.
6.  Neutron-capture cross sections for magic numbers are anomalously low.
7.  Nuclear properties (spin, magnetic moment, electrical quadrupole moment, metastable isomeric

states) change when magic number is reached.
Table 1.1.  Numbers of stable nuclei for odd and even Z and N

Z N A number of stable nuclei number of very long-lived nuclei
(Z + N)

 odd odd even 4 5
 odd even odd 50 3

even odd odd 55 3
even even even 165 11

The Shell Model of the Nucleus

The state of the nucleus may be investigated in a number of ways.  The electromagnetic spectra
emitted by electrons is the principal means of investigating the electronic structure of the atom.  B y
analogy, we would expect that the electromagnetic spectra of the nucleus should yield clues to its
structure, and indeed it does.  However, the γ spectra of nuclei are so complex that not much progress
has been made interpreting it.  Observations of magnetic moment and spin of the nucleus have been
more useful (nuclear magnetic moment is also the basis of the nuclear magnetic resonance, or NMR,
technique, used to investigate relations between atoms in lattices and the medical diagnostic
technique nuclear magnetic imaging).

Nuclei with magic numbers of protons or neutrons are particularly stable or ÔunreactiveÕ.  This is
clearly analogous to and chemical properties of atoms: atoms with filled electronic shells (the noble
gases) are particularly unreactive.  In addition, just as the chemical properties of an atom are largely
dictated by the ÔlastÕ valence electron, properties such as the nucleusÕs angular momentum and mag-
netic moment can often be accounted for primarily by the ÔlastÕ odd nucleon.  These observations sug-
gest the nucleus may have a shell structure similar to the electronic shell structure of atoms, and
leads to the shell model of the nucleus.

In the shell model of the nucleus, the same general principles apply as to the shell model of the
atom: possible states for particles are given by solutions to the Schr�dinger Equation.  Solutions to
this equation, together with the Pauli Exclusion principle, which states that no two particles can
have exactly the same set of quantum numbers, determine how many nucleons may occur in each shell.
In the shell model, there are separate systems of shells for neutrons and protons.  As do electrons, pro-
tons and neutrons have intrinsic angular momentum, called spin, which is equal to 1/2h (h =h/2¹,
where h is Planck's constant and has units of momentum, h = 6.626 x 10-34  joule-sec).  The total nuclear
angular momentum, somewhat misleadingly called the nuclear spin, is the sum of (1) the intrinsic an-
gular momentum of protons, (2) the intrinsic angular momentum of neutrons, and (3) the orbital angular
momentum of nucleons arising from their motion in the nucleus.  Possible values for orbital angular mo-
mentum are given by l, the orbital quantum number, which may have integral values.   The total an-
gular momentum of a nucleon in the nucleus is thus the sum of its orbital angular momentum plus its in-
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trinsic angular momentum or spin: j = l ±
1/2.  The plus or minus results because the
spin angular momentum vector can be
either in the same direction or opposite
direction of the orbital angular momen-
tum vector.  Thus nuclear spin is related
to the constituent nucleons in the manner
shown in Table 1.2.

LetÕs now return to magic numbers and see how they relate to the shell model.  The magic numbers
belong to two different arithmetic series:

N = 2, 8, 20, 40, 70, 112...
N = 2, 6, 14, 28, 50, 82, 126...

The lower magic numbers are part of the first series, the higher ones part of the second.   The numbers
in each series are related by their third differences (the differences between the differences between
the differences).  For example, for the first of the above series:

2 8 20 40 70 112
Difference 6 12 20 30 42
Difference 6 8 10 12
Difference 2 2 2
This series turns out to be solutions to the Schr�dinger equation for a three-dimensional harmonic os-
cillator (Table 1.3).  (This solution is different from the solution for particles in an isotropic Coulomb
field, which describes electron shells).

Table 1.3.  Particles in a Three-Dimensional Harmonic Oscillator (Solution of
Schr�dinger Equation)

l 0 1 0 2 1 3
j 1/2 1/2 3/2 1/2 3/2 5/2 1/2 3/2 5/2 7/2
State s+ p- p+ s+ d- d+ p- p+ f- f+
No. 2 2 4 2 4 6 2 4 6 8
Σ 2 6 12 20
Total (2) (8) (20)  (40)

N is the shell number;  No. gives the number of particles in the orbit, which is equal to 2j +1; Σ gives the number of
particles in the shell or state, and total is the total of particles in all shells filled.  Magic number fail to follow the
progression of the first series because only the f state is available in the fourth shell.

Magnetic Moment
A rotating charged particle produces a magnetic field.  A magnetic field also arises from the orbital

motion of charged particles.  Thus electrons in orbit around the nucleus, and also spinning about an in-
ternal axis, produce magnetic fields, much as a bar magnet.  The strength of a bar magnet may be mea-
sured by its magnetic moment, which is defined as the energy needed to turn the magnet from a posi-
tion parallel to an external magnetic field to a perpendicular position.  For the electron, the spin
magnetic moment is equal to 1 Bohr magneton (µe) = 5.8 × 10-9 ev/gauss.  The spin magnetic moment of
the proton is 2.79 nuclear magnetons, which is about three orders of magnitude less than the Bohr
magneton (hence nuclear magnetic fields to not contribute significantly to atomic ones).  Surprisingly,
in 1936 the neutron was also found to have an intrinsic magnetic moment, equal to -1.91 nuclear magne-
tons.  Because magnetism always involves motion of charges, this result suggested there is a non-uni-
form distribution of charge on the neutron, which was an early hint that neutrons, and protons, were
composite particles rather than elementary ones.

Total angular momentum and magnetic moment of pairs of protons cancel because the vectors of each
member of the pair are aligned in opposite directions.  The same holds true for neutrons.  Hence even-
even nuclei have 0 angular momentum and magnetic moment.  Angular momentum, or nuclear spin of
odd-even nuclides can have values of 1/2, 3/2, 5/2, and non-zero magnetic moment (Table 1.2).  Odd-

Table 1.2. Nuclear Spin and Odd-Even Nuclides
Number of Nucleons Nuclear Spin

Even-Even 0
Even-Odd 1/2, 3/2, 5/2, 7/2 ...
Odd-Odd 1,3
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odd nuclei have integer value of
angular momentum or 'nuclear spin'.
From this we can see that the angu-
lar momentum and magnetic mo-
ment of a nuclear are determined by
the last nucleon added to the nu-
cleus.  For example, 18O has eight
protons and 10 neutrons, and hence 0
angular momentum and magnetic
moment.  Adding one proton to this
nucleus transforms it to 19F, which
has angular momentum of 1/2 and
magnetic moment of ~2.79.  For this
reason, the shell model is also
sometimes called the single-parti-
cle model,  since the structure can be
recognized from the quantum-me-
chanical state of the ÒlastÓ parti-
cle (usually).  This is a little sur-
prising since particles are assumed
to interact.

Obviously, the three-dimen-
sional harmonic oscillator solution
explains only the first three magic
numbers; magic numbers above tha t
belong to another series.  This dif-
ference may be explained by assum-
ing there is a strong spin-orbit in-
teraction, resulting from the orbital
magnetic field acting upon the spin
magnetic moment.  This effect is
called the Mayer-Jensen coupling.
The concept is that the energy state
of the nucleon depends strongly on the orientation of the spin of the particle relative to the orbit, and
that parallel spin-orbit orientations are energetically favored, i.e., states with higher values of j
tend to be the lowest energy states.  This leads to filling of the orbits in a somewhat different order;
i.e., such that high spin values are energetically favored.  Spin-orbit interaction also occurs in the
electron structure, but it is less important.

Pairing Effects
In the liquid-drop model, it was necessary to add a term δ, the even-odd effect.  This arises from a

'pairing energy' that exists between two nucleons of the same kind.  When proton-proton and neutron-
neutron pairing energies are equal, the binding energy defines a single hyperbola as a function of I
(e.g., Figure 1.4).  When they are not, as is often the case in the vicinity of magic numbers, the hyper-
bola for odd A splits into two curves, one for even Z, the other for even N.  An example is shown in
Figure 1.6.  The empirical rule is: Whenever the number of one kind of nucleon is somewhat larger
than a magic number, the pairing energy of this kind of nucleon will be smaller than the other kind.

Capture Cross-Sections
Information about the structure and stability of nuclei can also be obtained from observations of the

probability that a nucleus will capture an additional nucleon.  This probability is termed the cap-
ture-cross section, and has units of area.  Neutron capture cross sections are generally of greater use
than proton capture cross sections, mainly because they are much larger.  The reason for this is simply
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Figure 1.6.  Schematic of binding energy as a function of I ,
neutron excess number in the vicinity of N=50.
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that a proton must overcome the repulsive coulomb forces to be captured, whereas a neutron, being neu-
tral, does not feel the electrostatic forces.  Neutron-capture cross sections are measured in barns,
which have units if 10-24 cm2, and are denoted by σ.  The physical cross-section of a typical nucleus
(e.g., Ca) is of the order of 5 x 10-25 cm2, and increases somewhat with mass number (more precisely, R =
r0A1/3, where A is mass number and r0 is the nuclear force radius, 1.4 x 10-13 cm).  While many neutron
capture cross sections are of the order of 1 barn, they vary from 0 (for 4He) to 105 for 157Gd, and are not
simple functions of nuclear mass (or size).    They depend on nuclear structure, being for example, gen-
erally low at magic numbers of N.  Capture cross-sections also dependent on the energy of the neutron,
the dependence varying from nuclide to nuclide.

Collective Model

A slightly more complex model is called the collective model.  It is intermediate between the liq-
uid-drop and the shell models.  It emphasizes the collective motion of nuclear matter, particularly
the vibrations and rotations, both quantized in energy, in which large groups of nucleons can partici-
pate.  Even-even nuclides with Z or N close to magic numbers are particularly stable with nearly per-
fect spherical symmetry.  Spherical nuclides cannot rotate because of a dictum of quantum mechanics
that a rotation about an axis of symmetry is undetectable, and in a sphere every axis is a symmetry
axis.  The excitation of such nuclei (that is, when their energy rises to some quantum level above the
ground state) may be ascribed to the vibration of the nucleus as a whole.  On the other hand, even-
even nuclides far from magic numbers depart substantially from spherical symmetry and the excita-
tion energies of their excited states may be ascribed to rotation of the nucleus as a whole.
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